
MS Thesis Report

Christo Aluckal1

May 15, 2024

Abstract— Deep Reinforcement Learning (DRL) can be used
to solve traditional classical control problems with high gener-
alizability which can be extended to harder problems. While
simple problems like Inverted Pendulum pose minimal training
challenges, complex tasks such as locomotion exponentially
increase training difficulty and duration. Leveraging Policy
Distillation, we observed promising outcomes in sharing knowl-
edge among concurrent agents through Curriculum Learning.
In this paradigm, an agent learning on an easier curriculum
serves as a sub-optimal teacher for another tackling a more
challenging curriculum. This study focuses on training agents
to race within a simulated racing environment, inspired by the
F1tenth Gym. Discussions on possible improvements and the
potential for policy reuse is also discussed.

I. INTRODUCTION
Deep Reinforcement Learning is a powerful tool for

robotics. Many tasks such as locomotion, gripping, navi-
gation etc. which were traditionally solved with classical
control can be abstracted and generalized using DRL. This
knowledge can be further built upon and improved by retrain-
ing the learnt policy to imitate a new set of directives. Due to
the high sample inefficiency of DRL methods, policies are
trained in simulation environments before being deployed
on real robots. Problems such as Inverted Pendulum and
Mountain Car are simple toy problems that do not require a
long training time. However, for complicated tasks such as
locomotion and navigation, training is exponentially harder
and can take longer. The DRL framework described below
provides insight on two methodologies to share knowledge
between concurrent agents using the Curriculum Learning
paradigm. The idea is that an agent learning on an easy
curricula can be considered as a sub-optimal teacher to
another agent learning on a harder curricula. The agent is
tasked with learning to race in a racing environment based
on the F1tenth environment (F1tenth Gym).

II. MOTIVATION

The motivation for this work is to show the efficacy of
utilizing concurrent agents to teach an agent to race. For
the baseline, when an agent based on the Unity Simulation
environment is tasked with racing on a set of waypoints,
even a simple waypoint configuration of a loop can result in
upto 36 hours of training time before convergence. It is not
feasible to train this agent on multiple tracks in multiple en-
vironments with multiple adversaries in a sequential manner.
Thus, a method to parallelize and speed up the convergence
is necessary.

*This work was not supported by any organization
1Christo Aluckal is with School of Computer Science, University at

Buffalo christoa@buffalo.edu

Fig. 1. Evaluation Environment

III. RELATED WORKS

Policy Reuse and Policy Distillation (Knowledge Transfer)
are the two major fields where this methodology can be
applied. The collective methodologies is called as Transfer
Learning. [11] provides an up to date and comprehensive list
detailing many methodologies for Transfer Learning, includ-
ing Imitation Learning, Hierarchical RL, Reward Shaping,
etc. [5] provide insight into massive parallelization of robots
in the same simulator using on-policy DRL. They show
a massive improvement in the average reward attained for
stair climbing scenarios. [1] provide a generalized approach
for reusing learned network weights and data to accelerate
heterogeneous agent tasks. They use a QDAGGER approach
to minimize the student loss compared to the teacher loss.
Knowledge transfer is also used in other disciplines such
as Computer Vision for Model Compression as well as
an RL policy selector. [10, 2] use Knowledge Transfer to
train a smaller Resnet architecture for classification tasks
by teaching the smaller network to approximate the same
function as a more complex network. [8] train an agent to
learn to select the Teacher rather than relying on heuristic
weights.

IV. METHODOLOGY

A. Environment

The environment is a modified version of the F1Tenth
Gym environment. The environment simulates a race car
based on its current orientation and the applied speed and
steering angle using an RK4 integration of an approximation
of Ackermann Dynamics. The environment consists of a
track with a centerline and walls on both sides with equal
widths. A simulated LiDAR is also present but is not utilized.
1 shows a sample figure of a map.

B. MDP

The MDP consists of a (S,A,R, P, γ) where γ = 0.99 and
transition probability P is set to the RK4 Ackermann update.
Each track consists of a csv containing (X,Y) coordinates
sequentially. The environment uses the X,Y values and
interpolates a Cubic Spline with the independent variable
being the Track Length (s). Thus xi = Xspline(si) and
yi = Yspline(si). The state space S is computed using a
vector with 62 elements. The first two values are the current
yaw ψ and the current velocity v of the car. The remaining
60 values are in the form of [x0, y0, x1, y1, ..., x59, y59] with
the closest x, y values on the spline upto a distance of 3m
in intervals of 0.1. Thus 30 x and 30 y values. The action
space A consists of (v, δ) with v being the input velocity
and δ being the steering angle of the car.

1) Reward: The reward formulation is ∆s ∗ v which is
the progress along the spline multiplied by the scalar current
velocity v, thus encouraging faster runs.

The termination criteria is the completion of the whole
track or collision with the walls which automatically stops
the current episode.

C. Transfer Learning Preliminaries

Each methodology uses a common setup. There are 4
environments available during the runs. This consists of an
Evaluation environment, an Easy Configuraion, a Medium
Configuration and a Hard Configuration. Each agent writes
the policy weights on the disk using an identifier that is
known to all concurrent agents.

D. Policy Reuse

For policy reuse, the SAC implementation of Stable-
baselines3 is utilized. In policy reuse the policy weights are
directly updated. For a set of weights (θ1, θ2, θ3, ...), the new
policy weights θp are computed using

θp = w1 ∗ θ1 + w2 ∗ θ2 + w3 ∗ θ3 + ... (1)

where (w1, w2, w3, ...) are probabilities of the weights
and

∑n
i=1 wi = 1

During each agents’ run, during an evaluation loop, the
training is paused and each policy stored on the disk is
evaluated for 10 episodes. The average rewards for each
policy is stored. For policy p, (θp) is computed in 2 ways;

1) Baseline Retention: Here, wp is set to a constant value
r. The probability distribution of the remaining weights are
computed as a softmax probability summing upto (1 − r)
based on the mean reward obtained by the remaining weights.
These weights are then used in eq 1. For eg, a r = 0.9 for
w1 with 3 concurrent policies having softmax probabilities
[0.06, 0.04] respectively would be

θ1 = 0.9 ∗ θ1 + 0.06 ∗ θ2 + 0.04 ∗ θ3 (2)

2) Dynamic Retention: Similar to the baseline retention
but there is no concept of a retention ratio. The probability
distribution is strictly based on the mean rewards obtained
by each policies. For policy 1 if the softmax probabilities
are [0.1, 0.6, 0.3] then the update would be

θ1 = 0.1 ∗ θ1 + 0.6 ∗ θ2 + 0.3 ∗ θ3 (3)

E. Policy Distillation

A similar approach is employed for distillation process [6].
However, each agent now has access to a set of evaluation
states Seval. This set of states does not exist in the respective
Easy, Medium, Hard configurations and thus would not result
in memorization. Each agent now computes the Expected
Advantage over the Seval and determines which policy
results in the maximum EA. The policy with the maximum
EA is considered as the current teacher and the SAC policy
loss is modified with

losspolicy = lossactor+βs ∗KL(πp(Seval)||πt(Seval)) (4)

where πp is the current policy distribution, πt is the best
teacher distribution and KL is the KL-divergence between
these distributions. This augmented loss would result in the
student policy πp to imitate or learn the teacher policy πt
and βs is a scaling factor. This method is employed by [9]
for RL purposes.

V. RESULTS

1) Policy Reuse: Figures 2,3,4 show the result of directly
modifying the network weights. As is evident from the
figures, there is no definite improvement when modifying the
weights of either the actor, the critic or both. The easy and
medium configs do show an improvement upon the baseline
but the baseline is far superior in the hard configuration. This
lack of consistency can be attributed to simply breaking the
chain of Stochastic Gradient Descent by directly changing
the weights in a non-differentiable manner. Since the weights
are updated as a weighted sum, the convergence is disrupted.

2) Policy Distillation: Figures 5,6,7 show the result of
adding a regularization to the policy loss in the form of
the KL divergence between the current policy distribution
and the current best teacher distribution results in more
consistent growth. There is no marked improvement for the
easy policy as this policy is considered as the easiest to
solve and thus would be it’s own teacher. For harder configs,
this gap is increased substantially. A higher scaling factor

Fig. 2. Policy Reuse on Easy Config with 90% retention. Red 90% critic, Yellow 90% actor, Blue baseline, Green 90% actor and critic

Fig. 3. Policy Reuse on Medium Config with 90% retention. Red 90% critic, Yellow 90% actor, Blue baseline, Green 90% actor and critic

Fig. 4. Policy Reuse on Hard Config with 90% retention. Red 90% critic, Yellow 90% actor, Blue baseline, Green 90% actor and critic

Fig. 5. Policy Distillation on Easy config with different βs. Black baseline, Yellow 10, Orange 30, Red 50, Green 100

Fig. 6. Policy Distillation on Medium config with different βs. Black baseline, Yellow 10, Orange 30, Red 50, Green 100

Fig. 7. Policy Distillation on Hard config with different βs. Black baseline, Yellow 10, Orange 30, Red 50, Green 100

indicates a stronger regularization which helps harder configs
to converge more efficiently. This can be seen from 6 which
shows the best result for a factor of 30 and 7 for a factor of
100.

VI. DISCUSSIONS AND CONCLUSION

From the results it can be shown that Policy Distillation
provides the most consistent improvement. This methodol-
ogy can be scaled and used in any environment as long
as a curricula or order of difficulty can be established. If
a baseline shows a clear order of difficulty then each policy
(except for the easiest) can learn from slightly better policies.
Other scaling methods such as Teacher Confidence, Variable
βs scaling can be incorporated rather than heuristically
selecting it. Certain improvements to the selection of Seval to
use rarity of states can be incorporated to use rare states more
strongly. Another possible improvement is the combination
of reuse and distillation.

VII. ACKNOWLEDGEMENTS

The base environment is a modified version of the
F1tenth Gym [3] Policy reuse was implemented on the
stabe-baselines3 platform [4] Policy distillation using SAC
was implemented using [7].

I would also like to thank Prof. Souma Chowdhury,
Prof. Karthik Dantu and Dr. Charuvahan Adhivarahan for
their continued guidance.

REFERENCES

[1] Rishabh Agarwal et al. “Reincarnating reinforcement
learning: Reusing prior computation to accelerate
progress”. In: Advances in Neural Information Pro-
cessing Systems 35 (2022), pp. 28955–28971.

[2] Lucas Beyer et al. “Knowledge distillation: A good
teacher is patient and consistent”. In: Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition. 2022, pp. 10925–10934.

[3] Matthew O’Kelly et al. “F1TENTH: An Open-source
Evaluation Environment for Continuous Control and
Reinforcement Learning”. In: NeurIPS 2019 Compe-
tition and Demonstration Track. PMLR. 2020, pp. 77–
89.

[4] Antonin Raffin et al. “Stable-Baselines3: Reliable Re-
inforcement Learning Implementations”. In: Journal
of Machine Learning Research 22.268 (2021), pp. 1–8.
URL: http://jmlr.org/papers/v22/20-
1364.html.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

[5] Nikita Rudin et al. “Learning to walk in minutes using
massively parallel deep reinforcement learning”. In:
Conference on Robot Learning. PMLR. 2022, pp. 91–
100.

[6] Andrei A Rusu et al. “Policy distillation”. In: arXiv
preprint arXiv:1511.06295 (2015).

[7] Pranjal Tandon. Soft Actor Critic in Pytorch. https:
//github.com/pranz24/pytorch-soft-
actor-critic. [Online; accessed 15-May-2024].
2021.

[8] Fei Yuan et al. “Reinforced Multi-Teacher Selection
for Knowledge Distillation”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 35.16 (May
2021), pp. 14284–14291. DOI: 10.1609/aaai.
v35i16.17680. URL: https://ojs.aaai.
org / index . php / AAAI / article / view /
17680.

[9] Jin Zhang, Siyuan Li, and Chongjie Zhang. CUP:
Critic-Guided Policy Reuse. 2022. arXiv: 2210 .
08153 [cs.AI].

[10] Linfeng Zhang et al. “Be your own teacher: Improve
the performance of convolutional neural networks via
self distillation”. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2019,
pp. 3713–3722.

[11] Zhuangdi Zhu et al. “Transfer Learning in Deep
Reinforcement Learning: A Survey”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence

45.11 (2023), pp. 13344–13362. DOI: 10.1109/
TPAMI.2023.3292075.

https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://doi.org/10.1609/aaai.v35i16.17680
https://doi.org/10.1609/aaai.v35i16.17680
https://ojs.aaai.org/index.php/AAAI/article/view/17680
https://ojs.aaai.org/index.php/AAAI/article/view/17680
https://ojs.aaai.org/index.php/AAAI/article/view/17680
https://arxiv.org/abs/2210.08153
https://arxiv.org/abs/2210.08153
https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.1109/TPAMI.2023.3292075

	INTRODUCTION
	Motivation
	Related Works
	Methodology
	Environment
	MDP
	Reward

	Transfer Learning Preliminaries
	Policy Reuse
	Baseline Retention
	Dynamic Retention

	Policy Distillation

	Results
	Policy Reuse
	Policy Distillation

	Discussions and Conclusion
	Acknowledgements

