
i

3D Reconstruction of Environment using RGB-D Imaging

A project report submitted in partial fulfillment of the requirements for the degree of

Bachelor of Engineering

by

 Christo Aluckal (Roll No. 7917)

Sumedh G. Deshpande (Roll No. 7927)

Karan Rao (Roll No. 7965)

Under the guidance of
Dr. Brijmohan Daga

Dr. Yogesh Agarwadkar (InfiCorridor Solutions Pvt. Ltd.)

DEPARTMENT OF COMPUTER ENGINEERING

Fr. Conceicao Rodrigues College of Engineering, Bandra (W), Mumbai – 400050

University of Mumbai

June 15, 2020

vi

Abstract

Development in the field of mobile robots has increased exponentially in the last couple of years.

They have become compact, robust, highly maneuverable and are able to carry a wide variety of

sensors and equipment. However, most commercial implementations of mobile robots occur

either outdoors with the help of signals such as GPS or require a priori knowledge of the indoor

environment. In this project, we aim to develop a methodology that will assist in exploration and

navigation of indoor environments using RGB-D images. The proposed method will generate 2D

maps for the exploration and navigation as well as generate 3D models of the mapped

environment.

vii

Table of Contents

Sr. No. Name Page

 no.

1. Introduction 1

2. Literature Review 2

2.1 RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of 2

 Indoor Environments

2.2 Problems in Indoor Mapping and Modelling 5

3. Proposed System 10

3.1 Problem Statement 10

3.2 Motivation 10

3.3 Scope 10

3.4 Constraints 10

3.5 Objectives 11

3.6 Designing effective input and outputs 11

3.7 Proposed Architecture 12

3.8 Past Work 13

3.8.1 Static 2D Map Generation Algorithm 13

3.8.2 Dynamic 2D Map Generation Algorithm 15

3.8.3 Static 3D Map Algorithm (Previous Approach) 15

3.8.4 2D Data Flow Diagram 16

3.8.5 3D Data Flow Diagram 19

3.8.6 2D Static Map Results 21

3.8.7 2D Dynamic Map Results 23

3.8.8 3D Manipulation Results 25

3.8.9 Comparative Study 26

3.9 Updated System 27

viii

3.9.1 Revision from previous system 27

3.9.2 Point Cloud Generation Algorithm 28

3.9.3 Surface Generation Algorithm 29

3.9.4 Point Cloud Generation 30

3.9.5 Surface Generation 32

4. Updated System Results 35

4.1 Reconstruction results 35

4.2 Algorithm Comparison 41

4.3 Mapping Results 42

4.4 Static 3D Mathematical Results 44

4.4.1 Set I 44

4.4.2 Set II 45

4.4.3 Set III 47

4.5 Dimensional Error Calculation 48

4.5.1 Wall Error Calculation 48

4.5.2 Suitcase Error Calculation 49

5. Applications 50

6. Hardware and Software Requirements 52

6.1 Hardware Requirements 52

6.2 Supported OS Environments 52

6.3 Software Requirements 52

7. Summary and Conclusions 53

7.1 Summary 53

7.2 Conclusion 54

7.3 Future Work 54

7.4 References 55

ix

Table of Figures

Sr No. Name Page

3.1 General Architecture 12

3.2 Pixel Angle Calculation 14

3.3 Spherical Coordinate Calculation 14

3.4 Dynamic 2D Map Flow Diagram 15

3.5 General Data Flow Diagram (Previous Approach) 16

3.6 2D Data Flow Diagram 18

3.7 3D Data Flow Diagram (Previous Approach) 20

3.8 2D Static Map Result 1 21

3.9 2D Static Map Result 2 22

3.10 Dynamic Map Result 1 23

3.11 Dynamic Map Result 2 24

3.12 Point cloud 25

3.13 Isolated Chair 25

3.14 Images for Reconstruction 26

3.15 Reconstruction Comparison 1 26

3.16 Reconstruction Comparison 2 27

3.17 General Data Flow Diagram (New Approach) 28

3.18 3D Spherical Coordinate Calculation 29

3.19 Point Cloud Generation DFD 30

3.20 Surface Generation DFD 32

4.1 Static Reconstruction Reference Image 35

4.2 Ball Pivoting 36

4.3 Tetrahedral Mesh 36

4.4 Alpha Mesh 37

x

4.5 Delaunay Triangulation 50

4.6 Screened Poissson 50

4.7 Marching Cubes (PyMCubes) 51

4.8 Marching Cubes (Skimage) 52

4.9 Time taken for Various Algorithms 52

4.10 Continuous Map 53

4.11 Discrete Map 54

4.12 Length of wall with chair (Red Line) 55

4.13 Height of wall with chair (Blue Line) 55

4.14 Distance of the wall from the camera (Green Line) 56

4.15 Length of wall with suitcase (Red Line) 56

4.16 Height of wall with suitcase (Blue Line) 57

4.17 Distance of the wall from the camera (Green Line) 46

4.18 Suitcase Height (Blue Line) 47

4.19 Suitcase Width (Red Line) 47

4.20 Suitcase Length (Green Line) 48

xi

Table of Tables

Sr No. Name Page

2.1 Summary for Paper I 3

2.2 Summary for Paper II 8

4.1 Error Calculation of Dimensions of the Wall 48

4.2 Error Calculation of Dimensions of the Suitcase 49

1

Chapter 1 : Introduction

Navigation has become an important part of our lives and although much research has been done

in using the navigation on the outside, considerably less research has been done in terms of

navigating indoors. Most of the technologies used before require prior setup to be made and

hence require knowledge of the environment beforehand. These include WiFi and Bluetooth

beacons, GPS sensors etc. all of which prove to be less viable of an option in terms of real-time

implementation. Unmanned Autonomous Vehicles especially aerial vehicles have seen large

scale development and improvements over the past few years.

Modern UAVs are very compact and customizable. They work very well in outdoor

environments due to their usage of GPS, however indoor navigation is still extremely

complicated due to the existence of a number of complexities which include dynamic obstacles,

clutter and a lack of any meaningful GPS signals. The project aims to make 2D and 3D maps and

models using RGBD imaging which can be reconstructed statically or dynamically. The project

is divided into two groups. One for navigation and reconstruction. The navigation team works on

algorithms to explore an unknown environment while the reconstruction team works on

algorithms to provide the 2D and 3D maps and models required to navigate in these unexplored

areas. We are performing a comparative analysis of the various methods to reconstruct

environments.

2

Chapter 2: Literature Review

2.1 RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor

Environments

2.1.1 Background

In this paper, the authors introduce RGB-D Mapping. It is a framework for using RGB-D

cameras to generate dense 3D models of indoor environments. RGB-D Mapping exploits the

integration of shape and appearance information provided by these systems. Alignment between

frames is computed by jointly optimizing over both appearance and shape matching. The

approach detects loop closures by matching data frames against a subset of previously collected

frames. To generate globally consistent alignments TORO is applied which is an optimization

tool developed for SLAM. The overall system can accurately align and map large indoor

environments in near-real time and is capable of handling situations such as featureless corridors

and completely dark rooms.

2.1.2 Literature Review

The authors implement the following methods to generate a 3D model

● RGB+Depth: This provides a stream of colour and depth images that will be used in the

algorithm

● Feature Matching: Sparse visual features are extracted from two frames and associate

them to depth values to generate feature points in 3D

● RANSAC: RANSAC provides the transformation between the feature sets. It is an

iterative optimization method

● ICP: After RANSAC, ICP determines the transformation between two point clouds that

provide the least error

3

● Loop Closure Detection: LCD is used to reduce the cumulative error in frame alignment.

It uses multiple frames to determine if the current path taken has been taken before

● Surfel Map Generation: A surfel consists of a location, a surface orientation, a patch size

and color. Surfels store a measure of confidence, which is increased through being seen

from multiple angles over time. Surfels with low confidence are removed from the

representation

2.1.3 Summary

YEAR AUTHOR COUNTRY OBJECTIVE CONTRIBUTION METHOD CONCLUSION

APRIL Henry, Peter U.S.A. In this paper the The authors RGB + Depth The authors

2012 & Krainin, authors investigate how present RGB-D

 Michael & introduce potentially Feature Mapping, a full

 Herbst, Evan RGB-D inexpensive depth Matching 3D mapping

 & Ren, Mapping. A cameras developed system that

 Xiaofeng & framework for mainly for gaming RANSAC utilizes a novel

 Fox, Dieter. using RGB-D and entertainment ICP joint

 cameras to applications can be Loop Closure optimization

 generate dense used for building Detection algorithm

 3D models of dense 3D maps of combining visual

 indoor indoor Surfel Map features and

 environments. environments. Generation shape-based

 alignment.

Table 2.1 Summary for Paper I

4

2.1.4 Research Gap

● Per frame, our current implementation extracts features in 150 ms, runs RANSAC in 80

ms, and runs dense ICP in an average of 500 ms. Surfel generation takes roughly 6

seconds per frame

● RANSAC is the faster and more reliable alignment component when considered

individually. However, there are situations where it fails and the joint optimization is

required

● For some frames, many detected visual features are out of range of the depth sensor, so

those features have no associated 3D points and do not participate in the RANSAC

procedure

● When the majority of the features lie in a small region of the image, they do not provide

very strong constraints on the motion

● The current implementation of RGB-D Mapping is not real-time. The global alignment

process of RGB-D Mapping is still limited. Instead of optimizing over camera poses, a

joint optimization over camera poses and 3D points could result in even more consistent

reconstructions

5

2.2 PROBLEMS IN INDOOR MAPPING AND MODELLING

2.2.1 Background

Research is being actively conducted in the field of Indoor Mapping and Modelling(IMM) for

more than thirty years. This research has come in the form of As-Built surveys, Data structuring,

Visualisation techniques, Navigation models and so forth. Much of this research is founded on

advancements in photogrammetry, computer vision and image analysis, computer graphics,

robotics, laser scanning and many others. This paper considers both existing and emerging

problems in IMM that are relevant to commercial enterprises and the general public, groups this

paper expects will emerge as the greatest users IMM and also, this paper discusses the various

possible applications of IMM. Existing problems are those that are currently being researched.

These will hopefully provide a framework for assessing progress and advances in indoor

modelling. The framework will be detailing existing and emerging problems, their solutions and

present best practices.

2.2.2 Literature Review

The main aim of this paper is to highlight the major problems and difficulties encountered in the

process of indoor mapping and modelling

Some of the major issues mentioned by the authors are:-

1. Variable lighting conditions: Variable lighting conditions affect the process of indoor

mapping when using vision based systems by inducing errors and discontinuities due to

the variation of light in indoor areas. The presence of surfaces that reflect/refract light

have a similar effect

2. Variable occupancy of indoor spaces: Many measurement systems are designed for

environments that contain as few visual obstructions as possible. Indoor environments are

6

often busy and cluttered. Measurement under these conditions is difficult, particularly for

vision based systems

3. Real-time acquisition of dynamic environments: Modelling of dynamic environments in

which there are many moving objects is presently done off-line. The challenge is to do it

on the fly

4. Diversity of Indoor Environments: Overcoming the above problem will first require a

study of the different types of indoor environments with the objective of cataloguing and

categorising them

5. Software tools: There are very few dedicated tools for processing indoor data and where

they exist they are usually found in research labs

6. PoI and landmarks strategies: Various strategies of Points of Interest and landmarks have

been investigated to facilitate outdoor navigation (Peters et al 2010). However these

cannot be readily applied for indoor environments. Different indoor objects might be

identified as landmarks or points of interest for the purpose of distinct applications. These

objects might be even not that characteristic as the traditional outdoor landmarks

7. Complexity visualisation: The amounts of information that are available to the user will

certainly increase. The challenge is to manage the display of this information without

reducing its complexity

8. Real-time change visualisation: Visualising change in 2D is fairly straightforward.

Visualising change in 3D is a little more difficult. The challenge is how to visualise

change in 3D in real-time. This is particularly important for work with mobile devices

Some of the possible/growing applications of IMM are:

1. Indoor modelling for crisis response: Evacuating an area during a time of crisis has for

decades been an active area of research. Applications for this purpose have to be able to

determine safe routes and guide users through safe routes. This requires sensors to

capture the state of the indoor environment, relate sensory information to the indoor

model, determine viable escape routes and finally convey the escape route to the user,

7

either visually or aurally. Additional to this, 3D indoor models can be used in crisis

simulations

2. Augmented systems: Augmented systems superimpose CGI over real world imagery with

the purpose of offering the viewer an enhanced or more informative image of the real

world

3. Gaming: Traditionally 3D games have relied on the design of virtual indoor

environments. However, as 3D indoor models become common, it is likely that there will

be greater use of ‘real’ indoor models. Eventually as augmented systems mature, it can

be expected that a new genre of games will emerge in which games are played in real

indoor environments with the benefit of augmented reality

4. Industrial applications: Measuring and discovering the composition of space, i.e.

determining the content of indoor space will allow greater interactivity with the space.

This applies in particular to industrial and manufacturing environments where users have

to operate/navigate machinery in confined spaces

5. Natural description of indoor environments (semantics): If the context of an environment

can be discerned then it stands to reason that with further work we can describe the

environment in natural language. This then allows space to be described to users in ways

that are familiar to them

6. Real-time decision support: A user interacts, navigates or uses an indoor environment

with a purpose. If an indoor environment can be described in natural language, and

provided that an AI is available, then a user’s decisions in the indoor environment can be

supported by the AI

8

2.2.3 Summary

YEAR AUTHOR COUNTRY OBJECTIVE CONTRIBUTION DATA CONCLUSION

DEC Sisi South Africa This paper The paper provides Acquisition Problems

2013 Zlatanovaa, discusses the valuable insight here refers to encountered

 George various about the kind of the during IMM are

 Sitholeb, problems constraints and measurement discussed in

 Masafumi encountered limitations one techniques, detail along with

 Nakagawac, during IMM and might face in the sensors, media, proposed

 Qing Zhud provides process of indoor and platforms solutions for the

 solutions to the mapping. It also used to acquire same and

 discussed discusses the raw data possible

 problems while various possible describing the applications of

 simultaneously fields in which geometry and mapping and

 providing the IMM can be used. radiometry of modelling for

 real world indoor commercial and

 applications of environments. academic

 IMM. purposes have

 been outlined.

Table 2.2 Summary for Paper II

2.2.4 Research Gap

The problems discussed above are only a means to an end. Ultimately the goal of IMM is to

allow users to interact with indoor environments in ways that enhance their use of space. Many

of the problems are interlinked, i.e. and enhancement in one problem will provide improvements

in the other. This is particularly the case with acquisition and modelling problems. This paper

has considered existing and emerging problems in indoor mapping. The problems are not

presented in any order of priority, partly because many of the problems are interlinked. The

purpose of the paper is to set up a framework for discussing problems in indoor mapping and

modelling. It is hoped that this framework can then be used as a platform for describing indoor

9

mapping and modelling research and developing benchmarks to test solutions for the problems

posed here and later.

10

Chapter 3: Proposed System

3.1 Problem Statement

To create 2D and 3D models for addressing the issue of accurate indoor navigation.

3.2 Motivation

1. Previous technologies - A lot of indoor navigation was carried out with the help of

ultrasonic beacons, WPS (Wi-Fi Position System), Bluetooth based approaches and so

on. All of these required specialised hardware to be setup in the indoor environment and

hence are not dynamic in nature which is why they cannot be used in unexplored areas.

Due to this very reason there is a need for a robust system that can function without the

need of any prior setup to be installed.

2. Accuracy issue - Localisation in indoor environments is much more challenging because

of the high complexity of obstacles and clutter. Lack of line-of-sight prevents GPS to

provide reliable information for the vehicle to localise itself, GPS also fails to provide

any details of possible obstacles in the environment.

3. Analysis - Making of 2D and 3D maps makes it easier to perform analysis of this

environment. It helps in identifying potential objects as well as determining optimal paths

once these maps are generated.

3.3 Scope

The project aims to make 2D and 3D models using RGB-D imaging. It focuses on developing

2D and 3D maps which would be both static and dynamic.

3.4 Constraints

1. Room/interior must be sparsely populated i.e. there cannot be too much clutter

2. Since the depth camera works on the principle of light, reflective and refractive

surfaces generate some error or discontinuity in the 2-D map

11

3. Objects in the field of view of the camera must be stationary i.e. there should be

no moving object during the construction of the map

4. Suitable lighting conditions must be maintained for optimum construction of the map

3.5 Objectives

● Completed Objectives

1. 2D Map generation using our algorithm

2. Dynamic 2D Map generation

3. Static 3D Map generation using the revised system

4. Dynamic 3D Map generation

● Future Work

1. Performing obstacle avoidance using 2D models.

2. Identification of objects in a reconstructed environment.

3.6 Designing effective input and outputs

The fundamental flaw in the data acquisition process is that the depth camera works on the

principle of stereo IR and therefore is susceptible to deviations caused by fundamental properties

of light such as reflection and refraction. These deviations cause erroneous data points which are

reflected in the reconstructed plot. Hence, to generate minimum deviations, care must be taken to

avoid potential pitfalls in the data acquisition process. The output of the program is a file which

provides representations for the data points mapped to the world coordinate system. Hence,

proper file representation must be generated to avoid any unnecessary issues.

12

3.7 Proposed Architecture

Figure 3.1 General Architecture

13

Architecture:

1. Hardware:- The hardware includes two cameras. One is a depth camera and the other is

a pose camera. We obtain the depth data from the depth camera and the pose data from

the pose camera to plot the 2D data. The depth camera also outputs a stream of colour

JPEGs and depth PNGs sequentially.

2. Software:- The cameras are interfaced with the respective programs by using their API

called the LibRealSenseSDK. We use the python wrapper for the API which is originally

written in C++. Along with this, the Open3D and PyVista libraries provide the requisite

functions for meshing point clouds and generating surfaces.

3.8 Past Work

3.8.1Static 2D Map Generation Algorithm

● Acquire the Depth and Colour Stream

● Input Angle of the camera

● Calculate the angle offset from positive X-axis

● Calculate angle made by pixel w.r.t. camera sensor

● Calculate the coordinates of the pixel location w.r.t. Fixed Reference

● Input deviations in x, y directions in meters

● Calculate final location w.r.t. Fixed Reference

14

Figure 3.2 Pixel Angle Calculation

Figure 3.3 Spherical Coordinate Calculation

15

3.8.2 Dynamic 2D Map Generation Algorithm

● Access the Tracking Camera to get the position and angular values

● Check if Thresholding criteria is met

● If criteria is met then plot the points and store the [position,points] in a dictionary

● If criteria is not met then skip current plotting and storing iteration

● Repeat until a satisfactory map is generated

● Store the final [position,points] dictionary in a file

Figure 3.4 Dynamic 2D Map Flow Diagram

3.8.3 Static 3D Map Algorithm (Previous Approach)

● Make fragments: build local geometric surfaces (fragments) from short subsequences of

the input RGB-D sequence. This uses RGBD odometry,Multiway registration,and

RGB-D integration

● Register fragments: the fragments are aligned in a global space to detect loop closure.This part uses

Global registration,ICP registration,and Multiway registration
● Refine registration: the rough alignments are aligned more tightly. This part uses ICP

registration,and Multiway registration
● Integrate scene: integrate RGB-D images to generate a mesh model for the scene.

This part uses RGB-D integration.

16

Figure 3.5 General Data Flow Diagram (Previous Approach

3.8.4 2D Data Flow Diagram (in reference to figure 3.6)

● The 2D plotting starts in P1.0 which is the execution of the 2D plotting script

● The 2D plotting occurs dynamically and thus requires the current pose data of the camera

relative to its starting position. This occurs in P2.0 which interfaces the pose estimator

camera methods and retrieves a tuple of current pose data i.e. (x,y,z,roll,pitch,yaw)

● Due to the refresh rate of both the depth and the pose estimator camera, we must only

map data when a significant motion has taken place. This is done in P3.0 where the

current pose data is calculated with the previous pose data. If the difference between the

x,y or yaw values is significant enough, we proceed with the plotting of the points. In

P3.1,thresholding criteria is not met hence no updating takes place. In P3.2 the pose data

is updated if and only if the thresholding criteria is met, which in-turn acts as the previous

pose data for the next iteration. This previous pose data is stored globally in a custom

data structure, and can be referenced at any time

● After P3.2,P4.0 occurs which accesses the depth camera methods and initializes and

configures the depth and colour pipeline/stream. Both these streams run in parallel. For

the 2D mapping, we are interested in acquiring the depth stream. For the 3D

Reconstruction system, we require a series of Colour JPEG images and corresponding

17

Depth PNG images. P5.0 and P5.1 are responsible for converting the depth and colour

frames received from P4.1 and P4.2 to the corresponding colour and depth images

● To create 2D maps, we first define the region between which depth data must be gathered.

Theoretically, we can obtain the depth of every single pixel in the depth frame, however,

most of these depth values are irrelevant. We only consider the central row of the depth

frame as it most likely provides data about objects in the environment that the

mobile robot is likely to encounter. We optimize even the central row value. In P6.0,we

calculate the start and end of the row region based on the rotation of the camera. When

the camera rotates, it most likely will rotate less than its horizontal FOV. Even though the

thresholding criteria is met, overlapping points will still be plotted. Hence, we calculate

the pixels that do not overlap with the previous iterations and map only those pixels of

the central row

● Since we have all the data we need, P6.1 converts all the points from the local coordinate

system to the world/spherical coordinate system. The points generated in this iteration

are stored temporarily in a custom data structure, which occurs in P7.0.The next

iteration begins after this

● Once the mapping requirements are satisfied, the points from the temporary data structure

are moved to a permanent data structure which can then be used for any further

processing requirement

18

Figure 3.6 2D Data Flow Diagram

19

3.8.5 3D Data Flow Diagram (in reference to figure 3.7)

● For P1.0 the 2D plotting algorithm provides a sequence of colour JPEGs and depth

PNGs. RGB-D image pairs (Colour and depth images) are read from a source RGB-D

image and registered to a target RGB-D image. For adjacent RGBD images, an identity

matrix is used as initialization. For non-adjacent RGBD images, wide baseline matching

is used as an initialization. This is called as frame matching and is P2.0
● A pose graph for multiway registration of all RGBD images is made. Each graph node

represents an RGBD image and its pose which transforms the geometry to the global

fragment space. For efficiency, only key frames are used

● Once a pose graph is created, multiway registration is performed and poses of RGB-

D images are estimated. This leads to the formation of fragments. This occurs in P3.0

● Once the poses are estimated, RGB-D integration is used to reconstruct a colored

fragment from each RGB-D sequence

● Downsampling of point clouds is done to make a point cloud sparser and

regularly distributed. Normals and FPFH feature are precomputed

● We compute a rough alignment between two fragments. If the fragments are neighboring

fragments, the rough alignment is determined by aggregating RGB-D odometry obtained

from Make fragments.This leads to the registration of fragments

● In P4.0, we perform the refining of the fragments using optimization methods

which might not always prove to be reliable

● Finally we read the alignment results from both Make fragments and Register fragments,

then compute the pose of each RGB-D image in the global space. P5.0 leads to the

integration of RGB-D images using RGB-D integration.This leads to the formation of
.ply files. The .ply files are viewable in any 3d rendering software

20

Figure 3.7 3D Data Flow Diagram

21

3.8.6 2D Static Map Results

Figure 3.8 2D Static Map Results 1

The above output was the first test performed with the 2D algorithm. The mapping was done by

taking a pixel coordinate (X,Y) and getting the respective depth values from each of them. Once

we have a depth value associated with each pixel we create a map where the pixel X coordinate

was the X coordinate of the map and the pixel depth values were the Y coordinate of the map. By

doing this, we essentially take the cubic representation and slice a plane from it i.e. Top Plane.

Here, the algorithm was run for a cupboard which was slightly open to stimulate variations.

Because of the use of the camera at a resolution of 640x480, we have 640x480=307,200 points

mapped.

22

Figure 3.9 2D Static Map Results 2

Due to the need of mapping the current coordinate system to a world coordinate system, we

devised a method to convert this spatial coordinate system to the world coordinate system. The

previous result contained 307,200 points which may cause issues in the overall processing of the

data. Hence, we consider only the central row in the depth measurement. Obstacles and/or

objects which lie above or below the central row are less likely to cause any collision. These

measurements of the extreme rows are hence irrelevant.

23

3.8.7 2D Dynamic map results

Figure 3.10 Dynamic Map Results 1

After obtaining a result for a single row value, we needed to add the condition that the mobile

robot will be in motion and as such, the motion can be translator or rotatory. To account for this,

when the user captures one row data during the depth acquisition, they also input the amount the

move in the X and Y axis and also input the rotation performed. These parameters were then fit

into the algorithm and a corrected output was observed. However, this method only integrates

rotation and translation as inputted by the user and as such cannot be performed dynamically.

24

Figure 3.11 Dynamic Map Results 2

After integrating the rotation and translation compensation we needed to scale the system to

accommodate for dynamic changes in the position, i.e. the system must know its rotation and

translation without any human input. These parameters are obtained using a Pose Estimating

Camera which proves values such as (x,y,z,roll,pitch,yaw). Using the x,y and yaw values, we

can calculate the offset of the camera which then helps us dynamically plot the map.A

thresholding function was also implemented which reduced the number of points plotted by only

plotting when significant motion had taken place. The solid black lines indicate an

approximation of the room this test was conducted in.

25

3.8.8 3D Manipulation Results

Figure 3.12 Point cloud

Figure 3.13 Isolated chair

26

3.8.9 Comparative study

Figure 3.14 Images for reconstruction

Figure 3.15 Reconstruction comparison 1

27

Figure 3.16 Reconstruction comparison 2

3.9 Updated System

The following section details the updated methodology for the 3D Reconstruction System

only. The 2D Map Generation System detailed in section 3.8 remains unchanged.

3.9.1 Revision from previous system

As it can be seen from fig 3.15 and 3.16, the previous system relied entirely on image

processing and hence would be a computationally expensive process in terms of both space

and time to give an accurate result. As an example, the previous system required processing

of roughly 1000-1500 depth and color images which would require special hardware. The

newly proposed system does not use images but rather uses point clouds generated by a series

of rather inexpensive mathematical calculations which makes the process of generating an

accurate result far simpler. The output can also be verified in professional CAD software to

measure the dimensional accuracy of the generated model which was not possible in the

previous system due to the output being a simple visual reconstruction of the environment

rather than a mathematically accurate model.

28

Fig 3.17 General DFD (New Approach)

3.9.2 Point Cloud Generation Algorithm

● Obtain yaw value from the pose camera and store it

● Retrieve the full pose data from the pose camera and pass it to the map generation

function

● Get the entire depth frame

● Calculate the Region of Interest (ROI) for the frame using the current yaw and the stored

yaw value

● Using the yaw value from the previous step we calculate the X,Y,Z coordinate of each

pixel in the ROI

● Offset the X,Y,Z values with the current position of the camera

● After the requisite iterations, save the coordinates before moving to the next frame

29

Fig 3.18 3D Spherical Coordinate Calculation

3.9.3 Surface Generation Algorithm

● Generate a point cloud from the xyz file obtained from 3.9.2 using Open3D

● Use the voxelization, downsampling operations from the Open3D library, preprocess the

point cloud and estimate the normals

● Remove the camera origin positions from the point cloud data

● Apply Ruppert’s algorithm to the preprocessed point cloud for the surface generation

using triangulation

● Smoothen the surface

● After iterating over all the .xyz files, combine the surfaces to form a composite scene

● Save the scene to an STL file for further analysis

30

3.9.4 Point Cloud Generation

Fig 3.19Point Cloud Generation DFD

31

Explanation for fig 3.19

● The 3D point generation algorithm starts at P1.0 where the script is executed

● We interface the pose camera which provides us the (x, y ,z) of the camera as well as its
roll, pitch and yaw values. In P2.0 we store the first yaw value in a data structure called
Instance Yaw Value. This value will be referenced and updated in all successive
iterations

● Once we have stored the yaw value, we pass the full pose data that will be retrieved in

P3.0 and store it in a data structure called Pose Data. This Pose Data is sent as an

argument for the map generation function

● We run the map generation function in P4.0

● To calculate the coordinates of the points in the real world, we require the depth frame of

the depth camera, i.e. the depth values of all the pixels. We use inbuilt functions to

retrieve this depth frame in P5.0

● Because the amount of information has a new dimension as compared to the previous 2D

implementation, we need a way to filter out the unnecessary data points. Thus we

calculate the Region of Interest i.e. the start and end point for each iteration of the map

generation. We use the Instance Yaw Value and Pose Data values to determine the ROI

for the iteration. In case it is the first iteration, we consider the ROI to be the entire frame.

Subsequent iterations will only consider a part of the whole frame. This calculation of the

ROI is done in P6.0
● The start and end point of the frame is sent to P7.0 where the real (x, y, z) values are

calculated using Cartesian Methods. We converted the pixel coordinates to real
coordinates. These values are temporarily stored in lists and once the iteration is
complete, these values are appended sequentially to a permanent file with the .xyz file
extension

● After a single frame is computed we can either move for the next iteration or end the

iterations. We decide the next course of action in P8.0. If we want to conduct more

iterations, the Instance Yaw Value is updated to the current yaw value i.e. the yaw value

in Pose Data. The iteration again repeats from P3.0 but with the newly updated Instance

Yaw Value

● In case the iteration is ended, the .xyz file is exported in P9.0 which can be further used
for meshing algorithms

32

3.9.5 Surface Generation

Fig 3.20 Surface Generation DFD

33

Explanation for Fig 3.20

● The 3D surface generation algorithm starts at P1.0 where the script is executed

● The .xyz files generated in 3.9.5 are opened in Open3D which converts the list of points

with (x,y,z) coordinates into a point cloud. Each file is converted into its own point cloud

in P2.0which is then sent for preprocessing and surface generation
● Voxel downsampling uses a regular voxel grid to create a uniformly downsampled point

cloud from an input point cloud from which the normals are estimated in P3.0.It is often

used as a pre-processing step for many point cloud processing tasks. Downsampling

helps reduce the number of points and hence reduces computational complexity. The

algorithm operates in two steps:

○ Points are bucketed into voxels.

○ Each occupied voxel generates exactly one point by averaging all points inside

● All origin combinations aka the camera position combinations eg-(0,0,0) are removed in

P4.0 to further simplify the process of triangulation or mesh generation. Points are

converted into PyVista’s polydata type and then into a numpy array from which the

combinations are removed using linear algebra and then the simplified pointcloud is

converted back into the polydata format

● P5.0 is the main step of the entire process in which Ruppert-Delaunay Triangulation is

applied to the preprocessed pointcloud which gives the surface/mesh of that

corresponding pointcloud

● Delaunay Triangulation - In mathematics and computational geometry, a Delaunay

triangulation (also known as a Delone triangulation) for a given set P of discrete points in

a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any

triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles

of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation

is named after Boris Delaunay for his work on this topic from 1934

● For a set of points on the same line there is no Delaunay triangulation (the notion of

triangulation is degenerate for this case). For four or more points on the same circle (e.g.,

the vertices of a rectangle) the Delaunay triangulation is not unique: each of the two

possible triangulations that split the quadrangle into two triangles satisfies the "Delaunay

34

condition", i.e., the requirement that the circumcircles of all triangles have empty

interiors

● By considering circumscribed spheres, the notion of Delaunay triangulation extends to

three and higher dimensions. Generalizations are possible to metrics other than Euclidean

distance. However, in these cases a Delaunay triangulation is not guaranteed to exist or

be unique

● Ruppert’s Algorithm - In mesh generation, Ruppert's algorithm, also known as

Delaunay refinement, is an algorithm for creating quality Delaunay triangulations. The

algorithm takes a planar straight-line graph (or in dimension higher than two a piecewise

linear system) and returns a conforming Delaunay triangulation of only quality triangles.

A triangle is considered poor-quality if it has a circumradius to shortest edge ratio larger

than some prescribed threshold

● The algorithm begins with a Delaunay triangulation of the input vertices and then

consists of two main operations.

○ The midpoint of a segment with non-empty diametral circles is inserted into the

triangulation.

○ The circumcenter of a poor-quality triangle is inserted into the triangulation,

unless this circumcenter lies in the diametral circle of some segment. In this case,

the encroached segment is split instead.

● These operations are repeated until no poor-quality triangles exist and all segments are

not encroached

● After the surface is generated by applying triangulation on the pointcloud, the surface is

smoothened to prevent any jaggedness, rough edges or astray triangles in P6.0
● Once all the surfaces are generated, they are simply added up with each other using

boolean operations from the PyVista library in P7.0.This added mesh or map is then

displayed with the appropriate lighting parameters

● Once a proper scene or map has been generated, it is exported into an STL file for further

use in P8.0such as taking measurements or post processing

35

Chapter 4 : Updated System Results

4.1 Reconstruction results

Various reconstruction algorithm results have been detailed below for the following

reference image

Fig 4.1 Static Reconstruction Reference Image

1. Ball Pivoting - The Ball-Pivoting Algorithm (BPA) computes a triangle mesh

interpolating a given point cloud. Typically, the points are surface samples acquired with

multiple range scans of an object. The principle of the BPA is very simple: Three points form

a triangle if a ball of a user-specified radius p touches them without containing any other

point. Starting with a seed triangle, the ball pivots around an edge (i.e., it revolves around the

edge while keeping in contact with the edge's endpoints) until it touches another point,

forming another triangle. The process continues until all reachable edges have been tried, and

then starts from another seed triangle, until all points have been considered.

36

Fig 4.2 Ball Pivoting

2. Tetrahedral - The algorithm requires the minimal surface information. The solid

modelling of the 3D objects needs not to be given in full explicit connectivity definitions of

the surface triangles. The generated tetrahedrons have empty circum spheres which are the

indication of the Delaunay property. A new automatic node replacement scheme reflecting

the initial surface nodal spacings is developed. The successive refinement scheme results in

such a point distribution that the algorithm does not require any surface conforming checks to

avoid penetrated surface boundaries and overlapped tetrahedrons. The surface triangles

become a direct consequence of interior tetrahedralization

Fig 4.3 Tetrahedral Mesh

37

3. Alpha (alpha=0.1358) - Alpha shapes are closely related to alpha complexes,

subcomplexes of the Delaunay triangulation of the point set. Each edge or triangle of the

Delaunay triangulation may be associated with a characteristic radius, the radius of the

smallest empty circle containing the edge or triangle. For each real number α, the α-complex

of the given set of points is the simplicial complex formed by the set of edges and triangles

whose radii are at most 1/α. The union of the edges and triangles in the α-complex forms a

shape closely resembling the α-shape; however it differs in that it has polygonal edges rather

than edges formed from arcs of circles. More specifically, Edelsbrunner (1995) showed that

the two shapes are homotopy equivalent. (In this later work, Edelsbrunner used the name "α-

shape" to refer to the union of the cells in the α-complex, and instead called the related

curvilinear shape an α-body.)

Fig 4.4 Alpha Mesh

4. Delaunay Triangulation with Rupperts - In mathematics and computational geometry, a

Delaunay triangulation (also known as a Delone triangulation) for a given set P of discrete

points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of

any triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles

of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is

named after Boris Delaunay for his work on this topic from 1934.

38

For a set of points on the same line there is no Delaunay triangulation (the notion of

triangulation is degenerate for this case). For four or more points on the same circle (e.g., the

vertices of a rectangle) the Delaunay triangulation is not unique: each of the two possible

triangulations that split the quadrangle into two triangles satisfies the "Delaunay condition",

i.e., the requirement that the circumcircles of all triangles have empty interiors.

By considering circumscribed spheres, the notion of Delaunay triangulation extends to three

and higher dimensions. Generalizations are possible to metrics other than Euclidean distance.

However, in these cases a Delaunay triangulation is not guaranteed to exist or be unique.

Ruppert’s Algorithm - In mesh generation, Ruppert's algorithm, also known as Delaunay

refinement, is an algorithm for creating quality Delaunay triangulations. The algorithm takes

a planar straight-line graph (or in dimension higher than two a piecewise linear system) and

returns a conforming Delaunay triangulation of only quality triangles. A triangle is

considered poor-quality if it has a circumradius to shortest edge ratio larger than some

prescribed threshold.

The algorithm begins with a Delaunay triangulation of the input vertices and then consists of

two main operations.

○ The midpoint of a segment with non-empty diametral circles is inserted into the

triangulation.

○ The circumcenter of a poor-quality triangle is inserted into the triangulation, unless

this circumcenter lies in the diametral circle of some segment. In this case, the encroached

segment is split instead.

These operations are repeated until no poor-quality triangles exist and all segments are not

encroached

39

Fig 4.5 Delaunay Triangulation

5. Poisson Reconstruction - The Poisson formulation considers all the points at once,

without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient

to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy

of locally supported basis functions, and therefore the solution reduces to a well conditioned

sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and

space complexities are proportional to the size of the reconstructed model

Fig 4.6 Screened Poisson

40

6. Marching Cubes - The algorithm proceeds through the scalar field, taking eight neighbor

locations at a time (thus forming an imaginary cube), then determining the polygon(s) needed to

represent the part of the isosurface that passes through this cube. The individual polygons are

then fused into the desired surface. This is done by creating an index to a precalculated array of

256 possible polygon configurations (28=256) within the cube, by treating each of the 8 scalar

values as a bit in an 8-bit integer. If the scalar's value is higher than the iso-value (i.e., it is inside

the surface) then the appropriate bit is set to one, while if it is lower (outside), it is set to zero.

The final value, after all eight scalars are checked, is the actual index to the polygon indices

array. Finally each vertex of the generated polygons is placed on the appropriate position along

the cube's edge by linearly interpolating the two scalar values that are connected by that edge.

The gradient of the scalar field at each grid point is also the normal vector of a hypothetical

isosurface passing from that point. Therefore, these normals may be interpolated along the edges

of each cube to find the normals of the generated vertices which are essential for shading the

resulting mesh with some illumination model.

a. Using PyMCubes

Fig 4.7 Marching Cubes (PyMCubes)

41

b. Using Skimage

Fig 4.8 Marching Cubes (Skimage)

4.2 Algorithm Comparison

Time Graph

Fig 4.9 Time taken for Various Algorithms

42

Fig 4.9 highlights the comparison between different algorithms mentioned in detail and the

time taken for mesh generation by each of them in seconds. As per the outputs in section 4.1

we can visually interpret that the fig 4.5 (our algorithm) is in close resemblance with the

original image in fig 4.1. When we compare the visual accuracy with respect to the time

taken to generate the output by different algorithms, we can infer that the most optimum

result is obtained by Delaunay with Ruppert’s algorithm with respect to time and accuracy.

4.3 Mapping Results

Continuous (Continuously generated scene files)

The continuous system consists of getting the depth frame with a single iteration of the code.

We calculate the Region Of Interest (ROI) for each frame and consider only the relevant part.

Fig 4.10 Continuous Map

43

Discrete (Separate wall and corner files)

The difference between continuous and the discrete iterations is that in discrete, the full frame

is considered and each new frame is stored in a separate xyz file. Hence there are overlapping

surfaces in this section.

Fig 4.11 Discrete Map

44

4.4 Static 3D Mathematical Results

4.4.1 Set I

Fig 4.12 Length of wall with chair (Red Line)

Fig 4.13 Height of wall with chair (Blue Line)

45

Fig 4.14 Distance of the wall from the camera (Green Line)

4.4.2 Set II

Fig 4.15 Length of wall with suitcase (Red Line)

46

Fig 4.16 Height of wall with suitcase (Blue Line)

Fig 4.17 Distance of wall from camera (Green Line)

47

4.4.2 Set III

Fig 4.18 Suitcase Height (Blue Line)

Fig 4.19 Suitcase Width (Red Line)

48

Fig 4.20 Suitcase Length (Green Line)

4.5 Dimensional Error Calculation

4.5.1 Wall Error Calculation

No. Measurement Measurement 2 Avg Real Approx. Error %

 1 in ft. in ft. (Suitcase)

 (Chair)

Length 14.18 14.54 14.36 12.02 19.47

Height 6.57 6.77 6.67 7.17 6.97

Distance from 7.13 7.28 7.21 7.53 4.25

Camera

 Table 4.1 Error Calculation of Dimensions of the wall

49

4.5.2 Suitcase Calculation

No. Measurement in cm. (Suitcase) Real Approx. Error %

Length 27.3 26.4 3.4

Height 63.5 66.6 4.65

Width 47.2 41.2 14.56

Table 4.2 Error Calculation of the Suitcase

Explanation for Tables 4.1 and 4.2

● Fig 4.12, 4.13 and 4.14 depict a mesh where a chair is placed in front of a wall. In fig

4.12, the red line indicates the length of the wall. In fig 4.13, the blue line indicates the

height of the wall and in fig 4.14, the green line indicates the distance of the wall from

the camera location. Fig 4.15, 4.16 and 4.17 shows the mesh with a suitcase in front of

the same wall. These 6 figures (4.12 to 4.17) are controlled outputs that are used to

measure the accuracy of the meshing algorithm. Fig 4.18, 4.19 and 4.20 depict just the

suitcase from the previous figures. We measure the accuracy of the dimensions of the

wall and the suitcase created by the meshing algorithm wrt the real values

● In table 4.1 we consider the dimensions of the wall, i.e. its length, height and distance

from camera. We take the dimensions highlighted in fig (4.12-4.17) and consider the

average of these values. We then measure the percentage of error using the formula :

|(real-measured)*100/real|. The real value was measured using a standard measuring tape.

While considering the length of the wall, we determined the measured value to be 14.18ft

from fig 4.12 and 14.54ft from fig 4.15. Averaging these values we get 14.36ft. The real

value was determined to be approximately 12.02ft. The error calculation becomes |-

2.34*100/12.02| = ~19.47% error. The same calculation is performed for the height of the

wall and the distance from the camera

● In table 4.2, we measure the dimensions of the suitcase i.e. its length, height and width.

Fig 4.18, 4.19 and 4.20 highlight the dimensions taken from the output generated by the

meshing algorithm. We then determine the error by comparing it with its real dimensions

that were acquired using a measuring tape

50

Chapter 5 : Applications

● Indoor mapping and modelling - Real-time acquisition of dynamic environments: The

modelling of dynamic environments, i.e. environments in which there are many moving

objects (e.g., crowded rooms) or environments in which space reforms (e.g., industrial

plants) is presently done off-line. The challenge is to do this in real-time and on mobile

devices

● Indoor navigation with obstacle avoidance - Before navigational information can be

extracted, the geometric model of the indoor environment has to be

attributed/semantically enriched and structured in a geometric form ideal for

navigational. These navigational models differ in their treatment of the continuity of

indoor space and by extension

● Augmented systems - Augmented reality (AR) is an interactive experience of a real-

world environment where the objects that reside in the real world are enhanced by

computer-generated perceptual information, sometimes across multiple sensory

modalities, including visual, auditory, haptic, somatosensory and olfactory. AR can be

defined as a system that fulfills three basic features: a combination of real and virtual

worlds, real-time interaction, and accurate 3D registration of virtual and real objects

● Gaming - Traditionally 3D games have relied on the design of virtual indoor

environments. However, as 3D indoor models become common, it is likely that there will

be greater use of ‘real’ indoor models. Eventually as augmented systems mature, it can

be expected that a new genre of games will emerge in which games are played in real

indoor environments with the benefit of augmented reality

● Finding the optimum or shortest path - By creating a mathematically accurate map or

model of the indoor environment, a robot can navigate around the entire scene effectively

by calculating the shortest path between the source and destination points. This allows a

multitude of different tasks such as indoor warehouse delivery and pipeline inspection

that the robot can perform efficiently

51

● Obstacle classification -The RGB system present onboard combined with image

processing techniques such as COCO or Tensorflow can be used to determine the

obstacles that are present in the indoor environment. We can further classify these

obstacles based on the amount of threat that they pose to the robot

● Unification of outdoor and indoor models - The development of modelling standards

for 3D city models is well developed, largely because outdoor data acquisition and

modelling has been active for many years. Indoor modelling is a more recent activity and

the models are not as mature as those of outdoor models. Ultimately a seamless transition

between outdoor and indoor models is desired, and this is an active area of research

● Indoor modelling for crisis response - Evacuating an area during a time of crisis has for

decades been an active area of research. Applications for this purpose have to be able to

determine safe routes and guide users through safe routes. This requires sensors to

capture the state of the indoor environment, relate sensory information to the indoor

model, determine viable escape routes and finally convey the escape route to the user,

either visually or aurally

52

Chapter 6 : Hardware and Software Requirements

6.1 Hardware requirements

1. Intel Realsense Depth Camera

2. Intel Realsense Tracking Camera

3. USB 3.0

4. Core i5 processor or above

6.2 Supported OS environments

1. Linux

2. Ubuntu 16.04 or above

3. Windows 10

4. Mac OSX

6.3 Software requirements

1. Python3

2. Open3D

3. PyVista

4. LibRealSense SDK

5. Pyrealsense library

6. Meshlab

7. CAD Software

53

Chapter 7 : Summary & Conclusions

7.1 Summary

● The first hurdle of solving the navigation problem was interfacing the cameras.

● The retrieved depth data needed to be plotted to visualize the acquired values. We were

able to take the x, y, depth cube and slice it along the y axis to retrieve x, depth values to

obtain the top view of the environment. This approach however lacked any meaningful

data relating to the actual environment.

● After multiple tests, we found that the previous system generated excess redundant

points. Hence, we optimized the depth gathering data to retrieve only the central row of

the depth frame.

● Previous tests were conducted using only a single depth frame which held the coordinates

of only one frame which would be lost due to the need of restarting the program. We

developed a method where multiple depth frames could be stitched together. Hence n

depth frames could be plotted as opposed to a singular frame. The limitation however

was the need for human input.

● The problem of human input was solved by using a pose estimation camera which

provided all the necessary parameters to plot the map dynamically i.e. without the need

for any human intervention. Further optimizations were conducted but one of the

essential goals of the project had been realized by this stage.

● After the 2D plot was completed, the 3D environment reconstruction system was

developed. The same logic i.e. Cartesian coordinate calculation and redundant point

removal that was used in the 2D plotting algorithm was extended to account for the new

dimension in the 3D plotting algorithm. The output of this algorithm resulted in the

generation of a point cloud dataset. This dataset was then utilized by the surface

generation algorithm.

● In the next step, a refined method of Delaunay Triangulation called Ruppert’s Algorithm

was used to generate a mesh or surface as described in the surface generation algorithm.

Thereafter, each surface was smoothened and all the individual surfaces were added up to

generate a mathematically accurate model of the environment.

54

7.2 Conclusion

● One of the goals of our project was to create a 2D map dynamically without any human

intervention which has been successfully achieved. Although a few results were found

which deviated from the original distance with the maximum being 28cm, this is a data

acquisition issue. The core algorithm for converting the spatial coordinates to a world

coordinate does not cause any problem.

● The main task of the project was to develop an algorithm that converted depth data to a

working and mathematically accurate 3D model. We obtained the results of this

algorithm and measured the percentage of error with respect to the real world values and

found an error percentage within reasonable bounds

7.3 Future Work

● Although the dynamic generation algorithm works as intended, certain issues in the data

acquisition can cause discontinuities and/or deviations in the desired output. We plan on

addressing this issue by either omitting data points that result in this discontinuity, or

normalize the data acquisition so that it does not cause significant changes.

● The dynamic 3D generation algorithm output requires post processing to get a

completely accurate result without discontinuities and holes generated by light sources

which is currently achieved using a separate software. We plan on incorporating a

solution for the same in our proposed system.

● Object detection technologies are a separate system and can be combined with the

proposed system to achieve object detection and mapping simultaneously

55

7.4 References

● Y. Cui, S. Schuon, D. Chan, S. Thrun and C. Theobalt, "3D shape scanning with a

time-of-flight camera," 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, San Francisco, CA, 2010, pp. 1173-1180.

● Henry, Peter et al. “RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of

Indoor Environments.” ISER (2010).

● Izadi, Shahram & A. Newcombe, Richard & Kim, David & Hilliges, Otmar &

Molyneaux, David & Hodges, Steve & Kohli, Pushmeet & Shotton, Jamie & J. Davison,

Andrew & Fitzgibbon, Andrew. (2011). KinectFusion: Real-time dynamic 3D surface

reconstruction and interaction. ACM SIGGRAPH 2011 Talks. 23

● Zlatanova, Sisi & Sithole, George & Nakagawa, Masafumi & Gist, A. (2013). Problems

In Indoor Mapping and Modelling. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-4/W4.

10.5194/isprsarchives-XL-4-W4-63-2013.

● Romanoni, Andrea & Delaunoy, Amaël & Pollefeys, Marc & Matteucci, Matteo.

(2016). Automatic 3D Reconstruction of Manifold Meshes via Delaunay

Triangulation and Mesh Sweeping. 10.1109/WACV.2016.7477650.

● C. Aluckal et al., "Dynamic real-time indoor environment mapping for Unmanned

Autonomous Vehicle navigation," 2019 International Conference on Advances in

Computing, Communication and Control (ICAC3), Mumbai, India, 2019, pp. 1-6, doi:

10.1109/ICAC347590.2019.9036813.

